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ABSTRACT 

Demands for seamless mobile communications are driving the research and 

development of software defined radio (SDR), which enables a single terminal to 

transmit and receive in distinct wireless systems through a simple change in software to 

reconfigure the terminal’s functions. Its application areas include military use, home 

networks, intelligent transport systems and cellular communications. Several SDR 

software architectures have been developed during the last few years. One 

implementation of the Software Communications Architecture is the Open Source SCA 

Implementation::Embedded (OSSIE) which is developed by the Mobile and Portable 

Radio Research Group (MPRG) at Virginia Tech. The goal of this thesis was to design 

and implement software defined radio transmitter and receiver components using OSSIE. 

The components were designed for use in the IEEE 802.16 WirelessMAN-OFDMTM 

transceiver and for contribution to the library of components being developed. Thus, the 

components will be flexible and useful for other transceivers by specifying the 

appropriate parameters. 
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EXECUTIVE SUMMARY 

Demands for seamless mobile communications are driving the research and 

development of software defined radio (SDR), which enables a single terminal to 

transmit and receive in distinct wireless systems through a simple change in software to 

reconfigure the terminal’s functions. Its application areas include military use, home 

networks, intelligent transport systems and cellular communications.  

The SDR technology allows radio systems to be dynamically reprogrammed to 

support new air interface standards or to provide new features and capabilities to the 

radio while in service. The benefit of SDR lies in its ability to support interoperation of a 

single radio device on multiple radio networks. The flexibility and reconfigurability of 

the SDR enables the radio architecture to support new waveform standards as they 

emerge. 

The Software Communications Architecture (SCA) is an open architecture 

framework that specifies the structure and operations within a SDR. It is a requirements 

specification for the design of the SDR. Despite its origins in the military domain, the 

SCA has also been widely accepted in commercial applications [5][6]. Several SDR 

software architectures have been developed during the last few years. One 

implementation of the SCA is the Open Source SCA Implementation::Embedded 

(OSSIE) which is developed by the Mobile and Portable Radio Research Group (MPRG) 

at Virginia Tech [7].  

OSSIE is a C++-based open source implementation of the SCA. Still a beta 

version release, the software also comes with a tool called the OSSIE Waveform 

Developer (OWD) for the rapid development of the SDR components and application 

waveforms. An evolving library of SDR components is also available on the MPRG’s 

website. [7] 

The goal of this thesis is to design and implement software defined radio 

transmitter and receiver components using OSSIE. The components will be designed for 

use in an IEEE 802.16 WirelessMAN-OFDMTM transceiver and for contribution to the 

library of components being developed. Thus the components will be flexible and useful 
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for other transceivers by specifying the appropriate parameters. For this thesis, the SDR 

waveforms and components were built using OSSIE version 0.5.0 that implements 

version 2.2.1 of the SCA standard. 

This research was the first attempt to use OSSIE to implement a SDR transceiver 

for the IEEE 802.16 standard so the software radio components were designed from 

scratch . Thus, the Incremental Development Model was adopted as a software process 

model to structure the development of the software components. The intent is to develop 

the application waveform, which comprises of SDR components, incrementally and 

systematically [21]. The process starts with a simple implementation of a subset of the 

software requirements, in this case the SDR components, and iteratively enhances the 

evolving versions until the full system, i.e. the SDR application waveform, is 

implemented. The incremental development model consists of three stages: Design, 

Develop and Verify [22]. 

Several considerations drive the design of the SDR components. These 

considerations are translated from the objectives of this thesis. These considerations 

affect the decisions that drive the subsequent design of the SDR components. They are: 

• Assumptions on the hardware platform that runs the software as well as 

provide the RF front-end of the system. The software design assumes that the 

incoming signal to the waveform consist of frequency down-converted to the 

complex baseband, discrete samples. 

• Functionality of the IEEE 802.16 WirelessMAN-OFDMTM standard, which is 

applicable to licensed bands from 2 to 11GHz, upon which this thesis will 

concentrate. This refers to a basic single-mode configuration of the physical 

layer.  

• Reusability and reconfigurability of the software components which should be 

useful in the library for building other waveforms with minimal or no 

amendments needed. This requires the components to be simple and 

elementary such that they are single-functioned and have generic port 

interfaces. 
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• Constraints of OSSIE 0.5.0 being a beta version at the time of this thesis work 

where a single port interface of a component is not allowed to have multiple 

connections to other components. Also, a common buffer for each component 

is used for data transactions through multiple input port interfaces of the same 

type. There is an additional constraint to the testing of the developed SDR 

components given that the interface to the hardware RF front-end will not be 

implemented in this thesis. 

The transmitter and receiver waveform were broken down into simple and 

elementary components listed in the following as associated pairs: 

• Randomizer and de-randomizer 

• Convolutional encoder and Viterbi decoder 

• Interleaver and de-interleaver 

• BPSK symbol mapper and symbol de-mapper 

• QPSK symbol mapper and symbol de-mapper 

• 16-QAM symbol mapper and symbol de-mapper 

• 64-QAM symbol mapper and symbol de-mapper 

• Insert and remove guard subcarriers 

• Insert and remove pilot tone and DC null subcarriers 

• Fast Fourier Transform and Inverse Fast Fourier Transform  

• Insert and remove Cyclic Prefix 

A test case is available in the IEEE 802.16 standard document to validate the 

functionality of the individual components. The SDR transmitter components were first 

tested individually with the results verified against the test case to validate their 

functionality. Having successfully tested and validated the transmitter component, the 

corresponding receiver component would then be tested against this transmitter 

component. Following the successful tests of the components, they would then be 

integrated into the waveform as increments and be tested as a waveform. 
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All basic transmitter and receiver components required to build the waveform 

compliant to the physical layer of the IEEE 802.16 WirelessMAN-OFDM, except the 

Reed-Solomon encoder and decoder, were tested and had their functionality validated 

successfully. This does not include functions of phase synchronization, fading mitigation, 

and multiple antennae reception.  

The SDR components developed in this thesis were designed with a strong 

emphasis on reusability and reconfigurability. The following describes the features 

incorporated into the design of the components that strives to achieve these traits: 

• Documentation with proper commentary in the software source code and a 

description file for each component that details the general parameters 

relevant to understanding the component’s structural design. 

• Proper naming convention of each component that will allow in the library, 

where applicable, multiple components of the same function but different 

attributes. This alleviates the need to change parameters, which incurs 

recompilation of the component, to accommodate different waveforms. 

• Dynamic data size handling of each component enabling them to 

accommodate waveforms with different data size requirements. 

• Elementary and single-function design that enables the components to serve as 

basic building blocks in building any waveform. 

• Generic port interface configuration design where only data port interfaces 

were provisioned for that will alleviate complexity in waveform design. 

As additional design work in this thesis,  multimode operations were explored 

using a waveform design which uses simple and reusable components having the traits 

above. The waveform consists of multiple subsets that encompass different modes of 

operations. A selector that precedes these waveform subsets receives control information 

and routes the received signal to the appropriate waveform subset. A receiver at the end 

of these waveform subsets receive the processed data stream and extracts control 

information from the header and feeds it back to the selector.  
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The main purpose of the experiment was to test the synchronization of the signal 

flow among the components which was critical to rendering the design feasible for multi-

mode operations. The waveform was constructed in OSSIE Waveform Developer (OWD) 

and tested successfully demonstrating that multi-mode operations within a waveform is 

feasible without compromising the reusability of the components. The waveform can be 

reconfigured with different profiles easily. 
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I. INTRODUCTION  

A. INTRODUCTION  
Software defined radio (SDR) is basically a radio implemented in software. 

Ideally, the communication signal is all processed in software within an SDR. This 

enables a reconfigurable system architecture for wireless networks and user terminals. A 

strong motivation for SDR technology is that it enables building of multi-mode, multi-

band and multi-functional wireless devices that can be improved simply via software 

upgrades without need to recall hardware units [1].  

One of the first software defined radio architectures was the SPEAKeasy system, 

initiated in the early 1990’s by the US Air Force and eventually turning into a joint effort 

by the US military branches [3]. However, an important milestone in the proliferation of 

SDR is the US Department of Defense Joint Tactical Radio System (JTRS) project 

started in 1990’s to develop a common programmable and multi-functional radio system 

that can be used for communication among all the Services [4]. The JTRS program 

developed an open Software Communications Architecture (SCA) which is an open 

architecture framework that specifies the operations within a SDR. Despite its origins in 

the military domain, the SCA has been widely accepted in commercial applications 

[5][6].    

Open Source SCA Implementation::Embedded (OSSIE) is a C++-based open 

source implementation of the SCA. Still a beta version release, the software also comes 

with a tool called the OSSIE Waveform Developer (OWD) for the rapid development of 

the SDR components and application waveforms. An evolving library of SDR 

components is also available on the Mobile and Portable Radio Research Group’s 

(MPRG) website. [7] 

 

B. THESIS OBJECTIVE 
The objective of this thesis is to develop components of a software defined radio 

receiver using OSSIE. The components shall be compliant to the physical layer of the 

IEEE 802.16 WirelessMan-OFDMTM standard. The components shall also contribute to 
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the library that will serve as a repository from which components can be retrieved to 

build other transceivers. Thus, the components shall be designed such that they are easily 

reusable and reconfigurable.  

 

C. THESIS OUTLINE 
The organization of the thesis is as follows: Chapter II elaborates on the Software 

Defined Radio as a system, its benefits and challenges in implementation. The chapter 

also introduces the IEEE 802.16 WirelessMANTM standard as a concept before 

elaborating on the physical layer of the IEEE 802.16 WirelessMAN-OFDMTM. Chapter 

III elaborates on the design environment for the development of the transceiver 

components in software. Chapter IV elaborates on the approach and considerations in the 

software design of the transceiver components. The chapter also presents the design 

algorithm of the transceiver components. Chapter V elaborates the methodology for test 

and verification of the transceiver components. The chapter then presents the test and 

verification results with respect to the component functionality. The chapter also presents 

the design features with respect to ensuring component reusability. Lastly, Chapter VI 

concludes the thesis and highlights future work.  

 



II. BACKGROUND 

A. SOFTWARE DEFINED RADIO 
 

1. What is a Software Defined Radio? 
The term software radio, used interchangeably with software defined radio, is 

basically a radio implemented in software. In other words, the communication signal is 

sampled and processed digitally within a radio. For the receiver, the hardware consists 

firstly of an antenna system that receives wideband communication signals. There would 

also be an analog-to-digital converter (ADC) that samples and digitizes the signal. 

Processing of the signal from here on would be done in software. The software can be 

loaded on any general purpose processors, field programmable gate-arrays (FPGA), 

digital signal processors (DSP) and application-specific integrated circuit (ASIC). [8] 

Joe Mitola stated that a true software radio places the software, “as close to the 

antenna as possible” [9]. In other words,  an ideal software radio is one where analogue to 

digital conversion takes place immediately after the antennae and all subsequent 

processing is carried out in software. Figure 1 shows an ideal software radio where two 

antennae are shown. All the main functions are carried out in software including the RF 

and IF processing of the signals, followed by the baseband functions such as modulation 

and demodulation. The disadvantage of this architecture is that the entire RF spectrum is 

converted by the ADC. This imposes very high performance demands on the ADC in 

terms of bandwidth, dynamic range and sampling rate. Current signal conversion 

technology is not established to realize such an ideal SDR as yet.  

 

ADC

DAC

Digital RF
& IF

Processing

Baseband
signal

Processing

ADC

DAC

Digital RF
& IF

Processing

Baseband
signal

Processing  
Figure 1.   The ideal software radio architecture. 
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Conventionally, a practical software defined radio is implemented with analog RF 

front-end circuitry as shown in Figure 2. The analog signal is down-converted to IF 

before being digitized by the ADC for follow-on processing in software. The main 

challenge therefore in progressing towards the ideal software radio architecture lays in 

the realization of fast, wide-band, high-resolution and economical ADC and DAC.   

ADC

DAC

Analog RF
& IF

Processing

Baseband
signal

Processing

ADC

DAC

Analog RF
& IF

Processing

Baseband
signal

Processing  
Figure 2.   A typical practical software radio architecture. 

 

2. Benefits of a Software Defined Radio 
In his book, Software Radio: A Modern Approach to Radio Engineering, Dr. 

Jeffrey Reed summarized with five factors that are expected to push wider acceptance of 

software radio [2]. 

 

a. Multifunctionality 
The same piece of hardware i.e. the radio set can be used to transmit, 

receive and process different communication signals that adhere to different air interface 

standards. This can be done simply be reconfiguring the software.  

 

b. Global Mobility 
The same piece of hardware i.e. the radio set can be used in different parts 

of the world that endorse different air interface standards. This can again be done simply 

be reconfiguring the software.  

 

c. Compactness and Power Efficiency 

4 

Unlike traditional non-SDR systems which require multiple hardware sets 

for multi-functional communication, the same piece of SDR hardware can be reused for 

such a purpose.  This results in a compact and power-efficient design, especially as the 

number of systems increases. 
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d. Ease of Manufacture 
A SDR comprises of fewer hardware parts than a traditional radio since 

most processing is done in software within a general purpose microprocessors or special 

purpose microprocessors like the DSP, or in reconfigurable hardware including FPGAs. 

This eases the production cycle for the manufacturer with lesser parts to standardize and 

produce. 

 

e. Ease of Upgrades 
Any service upgrade can be easily introduced through the release of new 

software versions without the expense of recalling or replacing the hardware units. A user 

can simply download the software off the internet and load it into the SDR.  

 

B. IEEE 802.16 WIRELESSMANTM Standard 
 

1. Broadband Wireless Access 
Broadband Wireless Access (BWA) is a technology aimed at providing high-

speed wireless access over a wide area from devices such as personal computers to data 

networks. According to the IEEE 802.16-2004 standard, broadband means having 

instantaneous bandwidth greater than around 1 MHz and supporting data rates greater 

than about 1.5 Mbit/s [10].  

 

a. Benefits 
BWA has become the best way to meet increasing demand for fast internet 

connection and integrated data, voice and video services. In addition to providing 

capacity that supports high data rates, BWA is wireless which enables a faster, more 

convenient and easier infrastructure set-up over the wired networks. For the users, BWA 

also means a possibility of mobile data communications. [12] 

 

 

 



b. Architecture 
Fixed BWA systems typically include at least a base station (BS) and a 

number of subscriber stations (SS). The BS connects the user SS to a core network. An 

uplink connection has the SS transmitting to the BS. The reverse is true for a downlink 

connection. Typically a BS uses several directional antennae and employs a sectoring 

technique to provide a 360 degree area coverage. Within a given frequency channel and 

BS antenna sector, all SS receive the same transmission. As such, the available 

bandwidth is shared among the SS users within the coverage area. This can be achieved 

through time-division multiple access or frequency-division multiple access. The shared 

bandwidth can be distributed via on-demand or fixed allocation methods. A reference 

fixed BWA system is shown in Figure 3. [11] 
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Figure 3.   Fixed broadband wireless access (From [11]). 
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2. Overview of IEEE 802.16 WirelessMANTM Standard 
The Institute of Electrical and Electronics Engineers Standards Association 

(IEEE-SA) sought to make BWA more widely available by developing IEEE Standard 

802.16, which specifies the wireless metropolitan area network (WirelessMAN) Air 

Interface.   

 

a. General Specifications 
IEEE 802.16 focuses on the efficient use of bandwidth between 10 and 66 

GHz and also the 2 to 11 GHz region. The standard defines a medium access control 

(MAC) layer that supports multiple physical layer specifications customized for the 

frequency band of use. The 10 to 66 GHz standard supports licensed frequencies for two-

way Line-Of-Sight (LOS) communications. The 2 to 11 GHz standard supports both 

unlicensed and licensed bands without need for LOS communication. [12] 

Table 1 summarizes the nomenclature for the various air interface 

specifications in this standard. 

Designation Applicability PHY
Additional 

MAC 
requirements

Options Duplexing 
alternative

WirelessMAN-SCTM 10-66 GHz 8.1 TDD     
FDD

WirelessMAN-SCaTM Below 11 GHz 
licensed bands

8.2 AAS (6.3.7.6) 
ARQ (6.3.4) 
STC (8.2.1.5.3)

TDD     
FDD

WirelessMAN-OFDMTM Below 11 GHz 
licensed bands

8.3 AAS (6.3.7.6) 
ARQ (6.3.4) 
Mesh (6.3.6.6) 
STC (8.3.8)

TDD     
FDD

WirelessMAN-OFDMA Below 11 GHz 
licensed bands

8.4 AAS (6.3.7.6) 
ARQ (6.3.4) 
STC (8.4.8)

TDD     
FDD

WirelessHUMANTM Below 11 GHz 
licensed-exempt 
bands

[8.2, 8.3, 
or 8.4] 
and 8.5

DFS (6.3.15) AAS (6.3.7.6) 
ARQ (6.3.4) 
Mesh (6.3.6.6) 
(with 8.3 only)      
STC (8.2.1.4.3/ 
8.3.8/8.4.8)

TDD

 
Table 1.   Air interface nomenclature (From [10]). 

 

 
7 



b. Project Development Milestones 
The first 802.16 standard, named IEEE Std 802.16-2001, was approved in 

December 2001 followed by two amendments which were the IEEE Std 802.16a and 

IEEE Std 802.16c. These were later superseded and made obsolete in 2004 by IEEE Std 

802.16-2004. An amendment to the IEEE Std 802.16-2004 was concluded in 2005 with 

IEEE 802.16-2005 which addresses mobility. [13] 

The works of this thesis is based on the active IEEE Std 802.16-2004 

standard that supports fixed broadband wireless access. 

 

3. IEEE 802.16 WirelessMAN-OFDMTM Physical Layer 
The physical layer for the WirelessMAN-OFDM is defined in the IEEE 802.16-

2004 standard, employs OFDM modulation and is designed for NLOS operation in the 

frequency bands below 11 GHz [10]. This section discusses the details of the IEEE 

802.16 WirelessMAN-OFDMTM physical layer, as found in [10]. 

 

a. OFDM Symbol Description 
The Inverse-Fast Fourier-Transform (IFFT) is used to create an OFDM 

waveform. A Cyclic Prefix (CP), which is a duplicate of the last section of the useful 

OFDM symbol, is required as shown in Figure 4 to protect against multipath 

interferences while maintaining the orthogonality of the tones. Defining G as the ratio of 

CP time to useful time (i.e. Tg/Tb), the standard specifies possible G values of 1/4, 1/8, 

1/16 and 1/32. [10] 

 

 
Figure 4.   OFDM symbol time structure (From [10]). 
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An OFDM symbol (see Figure 5) is made up of two hundred and fifty-six 

subcarriers. This determines the FFT size to be used. Within an OFDM symbol, there are 

two hundred data subcarriers, eight pilot subcarriers, a DC null, twenty eight lower 

frequency guard subcarriers and twenty seven high frequency guard subcarriers. [10] 

 

 
Figure 5.    OFDM frequency description (From [10]). 

 

The frequency offset indices of the subcarriers in an OFDM symbol are 

shown in Table 2. 

Parameter Value
Frequency offset indices of 
guard null subcarriers -128,-127,…,-101          +101,+102,…,127
Frequency offset indices of 
pilot subcarriers -88,-63,-38,-13,13,38,63,88

Frequency offset indices of 
data subcarrier

-100..-89,-87..-64,-62..-39,-37..-14,-12..-1 
+1..12,14..37,39..62,64..87,89..100

Frequency offset indices of 
DC null subcarrier 0

 
Table 2.   OFDM symbol parameters (From [10]). 

 

b. Channel Coding 
Channel coding specified in this standard comprises of, in the order for 

transmission, randomizing, forward error correction encoding and interleaving the data. 

For the receiver, the operations shall be applied in the reverse order. [10] 

 

c. Randomization 
Randomization shall be performed on each burst of data on the downlink 

and uplink except the preamble. Randomizing shall be reset with each OFDM symbol. If 

the amount of data to transmit does not fit exactly the amount of data allocated for an 

OFDM symbol, fixed with two hundred and fifty-six subcarriers, based on the selected 
9 



coding rate and modulation type, padding of logic ones shall be added to the end of the 

transmission block. For example, if the overall coding rate of 1/2 and a QPSK modulation 

are selected, the data allocated will be one hundred and eighty-four information bits. This 

is derived from one hundred and ninety-two data subcarriers allocated for an OFDM 

symbol. The QPSK modulation will allow two encoded bits per subcarrier. The encoding 

will restrict the randomized data to half the size of the encoder output. Of these 

randomized data, eight tail bits are to be reserved for the encoder to pad the data stream 

with logical zeroes. [10]  

The pseudo random binary sequence (PRBS) generator as shown in Figure 

6, shall be designed based on the polynomial 1 + X14 + X15. The shift-register of the 

randomizer shall be initialized with 100101010000000 for each OFDM symbol. Each 

data block to be transmitted shall enter sequentially into the randomizer, MSB first. [10] 

 

 
Figure 6.   PRBS generator for data randomization (From [10]). 

 

d. Forward Error Correction 

The FEC specified in this standard consists of a concatenation of a Reed–

Solomon outer code and a rate-adjustable convolutional inner code. At the transmitter, 

data shall first be encoded with the Reed-Solomon code before going through the 

convolutional encoder. [10] 

The Reed-Solomon coding is not discussed here as it was not implemented 

in this thesis. For the convolutional encoder, it shall have a basic rate of 1/2 and a 

constraint length of seven. The generator is shown in Figure 7 where the generator 

polynomials for output X and Y are 1 + X + X2 + X3 + X6 and 1 + X2 + X3 + X5 + X6 , 

respectively. [10] 
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Figure 7.   Convolutional encoder of rate 1/2 (From [10]). 

 

Table 3 shows the puncturing patterns used to derive the different code 

rates. X precedes Y in the order of output.  In the table, a “1” means a transmitted bit and 

“0” denotes a removed bit. For example, to achieve a code rate of 2/3, every third bit of 

the serial output stream is omitted for transmission. This equates to omitting the alternate 

bit of output X. [10] 

 

Rate 1/2 2/3 3/4 5/6
d free 10 6 5 4
X 1 10 101 10101
Y 1 11 110 11010
XY X 1Y 1 X 1Y 1Y2 X 1Y 1Y 2X 3 X 1Y 1Y 2X 3Y 4X 5

Code rates

 
Table 3.   The inner convolutional code with puncturing configuration (From [10]). 

 

Table 4 shows the block sizes used for the different modulations and code 

rates. 
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Modulation Uncoded block size  
(bytes)

Coded block 
size (bytes)

Overall 
coding rate RS code CC code 

rate
BPSK 12 24 1/2 (12,12,0) 1/2
QPSK 24 48 1/2 (32,24,4) 2/3
QPSK 36 48 3/4 (40,36,2) 5/6
16-QAM 48 96 1/2 (64,48,8) 2/3
16-QAM 72 96 3/4 (80,72,4) 5/6
64-QAM 96 144 2/3 (108,96,6) 3/4
64-QAM 108 144 3/4 (120,108,6) 5/6  

Table 4.   Mandatory channel coding per modulation (From [10]). 
 

e. Interleaving 
Interleaving at the transmitter is carried out on all encoded data bits to 

guard against burst errors which may be uncorrectable by the FEC decoder at the 

receiver. Interleaving is done via two permutations on the incoming coded bits per 

OFDM symbol. Parameters necessary for computing the permutations are Ncbps which 

denotes the number of incoming coded bits per OFDM symbol, Ncpc which denotes the 

number of coded bits per subcarrier, and s which is derived from the computation, 

ceil(Ncpc/2). Ncpc is dependent on the type of modulation and equates to 1, 2, 4 or 6 for 

BPSK, QPSK, 16-QAM, or 64-QAM modulation respectively. For a coded bit within a 

block of Ncbps bits, k represents its index order prior to the first permutation. After the 

second permutation, the index order of that same coded bit is denoted as mk while jk is the 

index after the second permutation. The interleaved data is then forwarded for 

modulation. [10] 

The two-step permutation for interleaving are defined as follows: 

(1) )12/()12/( 12mod kfloorkNm cbpsk +⋅=        1,...,1,0 −= cbpsNk  

(2) )mod())/12(()/( scbpskcbpskkk NmfloorNmsmfloorsj ⋅−++⋅=      

1,...,1,0 −= cbpsNk  

At the receiver, the de-interleaver carries out the reverse operations. A 

two-step permutation is used to re-order the coded bits after demodulation and before 

decoding . For a coded bit within a block of Ncbps bits, j represents its index order prior to 

the first permutation. After the second permutation, the index order of that same coded bit 

12 



is denoted as mj while kj is the index of that bit after the second permutation. The de-

interleaved data is then forwarded for decoding. [10]  

The two-step permutation for de-interleaving are defined as follows: 

(1) )mod())/12(()/( scbpsj Njfloorjsjfloorsm ⋅++⋅=        

1,...,1,0 −= cbpsNj  

(2) )/12()1(12 cbpsjcbpsjj NmfloorNmk ⋅⋅−−⋅=      

1,...,1,0 −= cbpsNj  

The first bit out of the interleaver shall map to the MSB in the 

constellation.  

 

f. Modulation 
After interleaving, the data bits are to the symbol mapper for modulation. 

The constellations for BPSK, Gray-mapped QPSK, 16-QAM, and 64-QAM are shown in 

Figure 8. The constellations shall be normalized with the indicated factor c to equalize 

average power. b0 is the LSB. [10] 
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Figure 8.   BPSK, QPSK, 16-QAM and 64-QAM constellations (From 

[10]). 

 

The constellation-mapped data shall then be modulated onto the data 

subcarriers of an OFDM symbol in order of increasing frequency offset index via the 

inverse fast Fourier transform (IFFT). [10] 

 

g. Pilot Modulation 

Pilot subcarriers shall be inserted into the OFDM symbol for channel 

estimation. The PRBS generator, of the polynomial X11 + X9 + 1, is shown in Figure 9 

and is used to produce a sequence, wk. The initialization sequences that shall be used on 

the downlink and uplink are shown in Figure 9 below. BPSK modulation is used for the 

pilot subcarrier. The value of each of the eight modulated pilot subcarrier within the 

14 



OFDM symbol of index k is derived from wk as shown below. The first OFDM symbol is 

indexed as k = 0.  [10] 

(1) Downlink 

kwcccc 2188633888 −==== −− , kwcccc 2138131363 −==== −−  

(2) Uplink 

  kwcccccc 21886338133888 −====== −− , kwcc 211363 −== −−  

 

 
Figure 9.   PRBS for pilot modulation (From [10]). 

 

C. SUMMARY 

This chapter presented the relevant background information that is useful for the 

understanding of the research. Key concepts presented were of the Software Defined 

Radio and the IEEE 802.16 standard. For the latter, the physical layer of the IEEE 802.16 

WirelessMAN-OFDMTM was described in detail. The next chapter continues to present 

useful background information on the software design environment which includes the 

Software Communications Architecture and OSSIE.  

15 
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III. SOFTWARE DESIGN ENVIRONMENT 

A. SOFTWARE ARCHITECTURE 
At the center of the SDR technology is the software architecture that governs the 

structure and operations within the SDR radio. The software architecture of a system 

details a collection of components and their interactions among each other [14].  

 

1. Software Communications Architecture (SCA) 
Many proprietary architectures exist, but to ensure portability and interoperability 

of the protocols on the different radios, an open architecture had to be developed. The 

Software Communications Architecture (SCA), developed by the US Department of 

Defense JTRS project, is such an architecture. While the SCA was originally intended 

solely for military use, it has gained commercial viability due to the efforts of groups like 

the Object Management Group (OMG) and the SDR Forum. 

The Software Communications Architecture (SCA) is an open architecture 

framework that specifies the structure and operations within a SDR. It is a requirement 

specifications for the design of the SDR. The interfaces are defined by using the CORBA 

Interface Definition Language (IDL), and graphical representations are made by using 

Unified Modeling Language (UML) [16]. The operating environment consists of a Core 

Framework (CF), a CORBA middleware and an operating system. 

 The SCA Core Framework is illustrated in Figure 10. The figure shows the 

primary SCA interfaces. A software component communicates with other components 

via its interfaces. Definition of these interfaces in the SCA is based on the CORBA 

middleware which ensures compatibility of software components in terms of being able 

to communicate with each other. The benefit of using a middleware is explained in the 

next section.  

 



 
Figure 10.   SCA Core Framework IDL relationships (From [17]). 

 

2. Common Object Request Broker Architecture (CORBA) 
Middleware is software that connects two or more software applications with non-

compatible interfaces. With the middleware, different software applications written in 

different languages or running on different platforms can interoperate and communicate 

transparently. [18] 

An example of a middleware is the Common Object Request Broker Architecture 

(CORBA) which is OMG's open, vendor-independent architecture and infrastructure that 

computer applications use to work together over networks.  

In a general sense CORBA “wraps” around code written in some language, with a 

standard interface definition [19]. This greatly facilitates interoperability since the 

functional code is hidden and only takes care of computation. Two pieces of functional 

code written in different programming languages but “wrapped” with CORBA can now 

communicate with each other. Therefore CORBA provides the mechanism through which 

different software defined radio vendors can develop compatible software and hardware 

18 
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interfaces. The users do not have to worry about downloading the correct software for the 

SDR since they should all be compatible.  

 

B. OPEN SOURCE SCA IMPLEMENTATION::EMBEDDED (OSSIE) 
OSSIE, developed by the Mobile and Portable Radio Research Group (MPRG), is 

an open source implementation of the SCA. OSSIE is a C++-based open source 

implementation of the SCA. Still a beta version release, the software also comes with a 

tool called the OSSIE Waveform Developer (OWD) for the rapid development of the 

SDR components and application waveforms. An evolving library of SDR components is 

also available on the MPRG’s website. [7]  

In this thesis, the SDR waveforms and components were built using OSSIE 

version 0.5.0.  

 

C. WAVEFORM DEVELOPMENT 
A development environment that automatically prototypes the code structure of 

the waveforms and components allows radio designers to better concentrate on the 

functional design of the component and waveform. A development environment also 

standardizes the code structure which makes it easier for subsequent modifications and 

improvement. Some Waveform Development Environments (WDE) feature automatic 

code generation where a skeleton code is generated, with the functional code to be added 

on. This makes developing a SDR easier since a developer needs only to concentrate on 

the functional code design. [20] 

There are several WDEs commercially available on the market today that deals 

specifically with the SCA. However, unlike the OSSIE Waveform Developer (OWD), 

they are all proprietary tools. Table 5 summarizes the major features supported by some 

of the commercially off-the-shelf (COTS) available SCA WDEs and compares them to 

OWD. [20] 



Software Package XML Generation Code Generation Domain Management Free
Harris dmTK Yes No Yes No

Zeligsoft Component Enabler Yes Yes No No
CRC Development Toolset Yes Yes No No

PrismTech Spectra Yes Yes No No
OSSIE Waveform Developer Yes Yes No Yes  

Table 5.   SCA development environment comparison (From [20]). 

 

D. OSSIE WAVEFORM DEVELOPER (OWD) 
The OSSIE Waveform Developer is a form of Graphical User Interface (GUI) that 

facilitates the designing of SCA waveforms and components. In addition, the OWD also 

generates skeleton C++ code and the utility files necessary to install the components and 

waveforms as well as run the application waveform. [20] 

The OWD facilitates creation of new SDR components as well as building of a 

waveform application using components available in the stored library. In using OWD to 

create new SDR components, the basic structure of the component can be designed 

within the OWD which will then generate the skeleton C++ code for the component. The 

developer can then proceed to fill in the skeleton code with the desired functionality of 

that component without having to worry about the SCA-compliant interfaces. [20] 

 

1. File and Directory Structure 
Figure 11 shows a typical directory and file layout resulting from waveform 

generation using OWD [20]. 

 

20 
Figure 11.   OWD generated directory layout (From [20]). 



Tables 6 and 7 list the files that are generated for typical waveforms and 

components respectively [20]. 

 

File Type
DomainManager.dmd.xml SCA Waveform XML
DomainManager.spd.xml SCA Waveform XML
DomainManager.scd.xml SCA Waveform XML
DomainManager.prf.xml SCA Waveform XML
DeviceManager.dcd.xml SCA Waveform XML
DeviceManager.spd.xml SCA Waveform XML
DeviceManager.scd.xml SCA Waveform XML
DeviceManager.prf.xml SCA Waveform XML
<Waveform Name>.sad.xml SCA Waveform XML
<Waveform Name>_DAS.xml OSSIE Waveform XML
configure.ac Autoconf File
Makefile.am Autoconf File
reconf Autoconf File
aclocal.d Autoconf Directory  

Table 6.   OWD generated waveform files (From [20]). 

 

File Type
<Component Name>.spd.xml SCA Component XML
<Component Name>.scd.xml SCA Component XML
<Component Name>.prf.xml SCA Component XML
<Component Name>.h OSSIE Component C++
<Component Name>.cpp OSSIE Component C++
main.cpp OSSIE Component C++
port_impl.h OSSIE Port Implementation C++
port_impl.cpp OSSIE Port Implementation C++
configure.ac Autoconf File
Makefile.am Autoconf File
reconf Autoconf File
aclocal.d Autoconf Directory  

Table 7.   OWD generated component files (From [20]). 

 
2. XML Domain Profile 
The XML files that are generated with each waveform and component are integral 

to the operation of the radio. As described by the JTRS JPEO, these files “describe the 

identity, capabilities, properties, and interdependencies of the hardware devices and 

software components that make up the system” [17]. 
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3. C++ Code 
As shown in Table 7, there are five C++ files that are auto-generated for each new 

component. These files make up the functionality of a particular component. The 

developer needs only to modify these files so as to add the necessary function intended of 

the component.  The following describes in further detail these files except the main.cpp 

file which contains default utility code transparent to the developer and not critical to the 

component design in terms of code modifications to add component functionality.  

 

a. Component Name.h 
This is a C++ header file with the same name as the component and  

contains all of the C++ class definitions for the particular component. Member functions  

and port declarations compliant to the SCA are included by default. Necessary constant 

declarations representing parameters of the component function can also be included in 

this file. 

 

b. Component Name.cpp 
This is a C++ implementation file. By default, this file includes the basic 

SCA functionality such as getPort, start, stop, releaseObject, the constructor and 

destructor for the component. The port interfaces of the component are also instantiated. 

Very importantly, this is also the file for the developer to add functions that defines the 

SDR component. Member functions can be added to process data according to that 

component functionality of the SDR. 

 

c. port_impl.h 
This file contains C++ class definitions for each type of port interface used 

in the component. Two classes are automatically generated for each port interface on a 

component. They are dataIn_<Interface Name>_i and dataOut_<Interface Name>_i. 

These are classes that define operations for port communications between components.  
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d. port_impl.cpp 
This file contains the C++ implementation of the member functions 

defined in the port_impl.h file. 

 

E. SUMMARY 
Key concepts presented in this chapter were of the Software Communications 

Architecture and OSSIE. For the latter, the OSSIE Waveform Developer was described in 

detail. The next chapter will present the process of software development. This includes 

the approach and considerations taken before elaborating on the design of the waveform 

and components. 
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IV. SOFTWARE DEVELOPMENT 

A. APPROACH 
As the works of this thesis were also the first attempts to use OSSIE to implement 

SDR of the IEEE 802.16 standard, there were little or no specific resources to use as 

references. The research developed the software radio components from scratch. Thus, a 

software process model was adopted to structure the development of the software 

components.  

 

1. Incremental Development Model 
The intent is to develop the application waveform, which comprises of SDR 

components, incrementally and systematically. The process starts with a simple 

implementation of a subset of the software requirements, in this case the SDR 

components, and iteratively enhances the evolving versions until the full system, i.e. the 

SDR application waveform, is implemented. [21] 

The incremental development model comprises of three stages: Design, Develop 

and Verify. Figure 12 describes the interrelationship between these three stages as a 

model and how it corresponds to processes in the software waveform development of the 

IEEE 802.16-2004 standard. [22] 

 

a. Design 
This stage starts with defining the outline software requirements and 

assigning these requirements to the specific increment. Specifically, the overall waveform 

design shall be addressed conceptually with respect to the IEEE 802.16-2004 standard 

requirement. The conceptual waveform design will then be decomposed into smaller and 

fundamental components. These components will be the increments of the model. 

Component design will then be addressed from the simplest to the complicated. In this 

way, the system software architecture is designed and shall serve as a framework for 

actual software development at the next stage. 



 
Figure 12.   Incremental Development Model (After [22]). 
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b. Develop 
This is the actual work of software development and programming, 

whereby the system requirements and pseudo-codes are converted to actual software 

languages. The coded algorithms are validated incrementally to ensure they meet the 

functionality expectations. Successful increments are stored for future use and new 

functionalities through design modifications will be introduced for the next increment.  

 

c. Verify 
With the incremental development model, the software system design gets 

larger and more complex with each iteration. Increments will be integrated in this stage 

and the system as a whole will be verified to meet the holistic software requirements. For 

this research, the eventual completed system must be able to emulate the IEEE 802.16 

WirelessMAN-OFDMTM physical layer.  

 

B. CONSIDERATIONS 
Several considerations drive the design of the SDR components. These 

considerations are translated from the objectives of this thesis. The following sections 

describe these considerations and the decisions that drive the subsequent design of the 

SDR components.  

 

1. Assumptions 
The SDR, though largely implemented in software still require a hardware 

platform to run the software as well as provide for the RF front-end of the system. As the 

main focus of the thesis objectives is to create SDR components that will contribute to 

the library of components for further development work, speed was not important.    

Therefore, the SDR components designed using OSSIE needed only to be run on any 

general purpose processor.  

The interface to the hardware RF front-end for actual air transmission and 

reception is set aside as future work. Nevertheless, an assumption has to be made on the 

RF front-end architecture to facilitate the design of the SDR waveform. Figure 13 



illustrate the assumed SDR architecture design consisting of both the hardware-

implemented RF front-end and the software-implemented SDR waveform. 

 

2. Functionality 
The IEEE 802.16 standard encompasses many features over a wide range of 

frequencies to ensure a high quality of service. This thesis concentrates on the IEEE 

802.16 WirelessMAN-OFDMTM physical layer standard which uses licensed bands from 

2 to 11GHz. The goal of the thesis is to implement SDR components for a basic single-

mode configuration of the physical layer standard. These were explained in Chapter II of 

this thesis. In addition, no subchannelizations were considered. In other words, the full 

bandwidth would be used. The transceiver design considered was to be for the Subscriber 

Station (SS). 
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Figure 13.   Assumed SDR architecture design. 
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3. Reusability and Reconfigurability 
A very important goal of the thesis is that the implemented SDR components be 

reusable so that the components can be contributed to a growing active library. The 

components should be able to be reused, with little or no amendments, for building other 

waveforms. This requires the waveform to be broken down to as many simple and 

elementary components as possible. This way, the components can be designed in a way 

as generic as possible such that it is single-functioned and not customized to any 

waveform standard or profile. The components should also be designed in a way where 

their numbers of interfaces are minimized and operations kept simple and rudimentary. In 

the case where amendments to the component design are required, the code should be 

well-documented so that effort to amend the code can be made easy.  

Achieving the above will also enable easy reconfiguration of the waveform. The 

waveform can be reconfigured easily without having drastic reconstruction by simply 

replacing the generic components with others from the library. In other words, there 

should not be any need to build another component with functions customized to the new 

configuration when a component with the same fundamental function already exists..  

 

4. Constraints 
Firstly, the SDR waveforms and components were built in this thesis using OSSIE 

version 0.5.0 which was still a beta version under development. Thus it was important 

that there be proper documentation to track the OSSIE version upon which the code for 

the SDR components were based. There was a given possibility that code developed 

based on previous beta versions of OSSIE may not run on newer beta versions since, at 

the developmental stage, the push for an effective final product outweighs the need to 

maintain backward compatibility. 

Secondly, OSSIE 0.5.0 does not allow a single port interface of a component to 

have multiple connections to other components. It’s strictly a one-to-one connection. For 

example, Component A cannot be connected via a single output port to inputs of 

Component B and C concurrently. Component A needs to have two output ports to be 

able to connect to Component B and C.   



Thirdly, although OSSIE 0.5.0 allows multiple input port interfaces of the same 

type, it should be noted that a common buffer is used to store data transacted through 

these ports.  For example, Component A may have two input ports of type realShort. 

However, data received through these two ports are stored in a common buffer and runs 

the risk of overwriting each other. It is thus important to make use of mutexes, which is a 

programming variable used to lock resources to prevent sharing, or ensure proper usage 

synchronization to avoid unintended data erasure [23].  

Fourthly, as the interface to the hardware RF front-end will not be implemented in 

this thesis, there is a need to circumvent such that testing of the developed SDR 

components will still be effective.  

 

C. WAVEFORM DESIGN 
To achieve reusability of the components and easy reconfigurability of the 

waveform, the waveform has to be composed of many simple and elementary 

components. As such, the transmitter and receiver waveform were designed where the 

working model to be implemented was translated from the conceptual model shown in 

Figure 14. The waveform design of the transmitter and receiver working models are 

shown respectively in Figure 15 and Figure 16. 
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Figure 14.   Conceptual waveform design. 
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Figure 15.   Working transmitter waveform design. 
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Figure 16.   Working receiver waveform design. 
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D. COMPONENT DESIGN 
Every component in the software architecture is structured somewhat similarly by 

the automatic code generation feature of the OWD. As described in Chapter III, 

subsequent modification to customize the auto-generated code to the intended component 

function involves only the four C++ files. Figure 17 illustrates the relationship with 

respect to the component functionality design between these four files.  

 

<component>.h

<component>.cpp

Process_data ()

port_impl.h

port_impl.cpp

pushPacket

Class 
dataIn_<port type>_i

Class 
dataOut_<port type>_i

send_data

<component>.h

<component>.cpp

Process_data ()

port_impl.h

port_impl.cpp

pushPacket

Class 
dataIn_<port type>_i

Class 
dataOut_<port type>_i

send_data

 
Figure 17.   Functional architecture of the OWD auto-generated C++ code. 

 

The function process_data carries out the main component function and is to be 

added into the auto-generated code. This is where incoming data from preceding 

component is processed before sending it off to the succeeding component. The functions 

pushpacket and send_data in the port_impl.cpp file provide the input and output services 

for process data. 

Several port types are available for use of which four were applicable in the 

component design in this thesis. Components with a single channel port interface 

transferring data of the type integer i.e., whole numbers only, will use the realShort port 

type. If the data is of the type real, the component will use the realFloat port type. 

Components with a dual channel port interface transferring data of the type integer i.e., 

whole numbers only, will use the complexShort port type. If the data on each of the two 

channel interfaces is of the type real, the component will use the complexFloat port type. 
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In SDR design, the dual channel port interfaces facilitate data flow in the In-phase and 

Quadrature channels.  

 

1. Transmitter 
The fundamental components required in the transmitter waveform are illustrated 

in Figure 15. As with the approach of the software development using the Incremental 

Development model, the simplest components were developed first and added as 

increments to the waveform before moving on to develop more complicated components.  

The following sections describe the design of the components within the 

transmitter waveform with the exception of the Reed-Solomon Encoder which was not 

developed within this thesis work. The component to implement the IFFT was reused and 

modified slightly from the one developed by Leong Wai Kiat, who was working on the 

IEEE 802.11a implementation using OSSIE for his thesis [22]. 

 

a. Randomizer 
Component name: randomizer_802_16 

Port design: randomizer_802_16 has one input and one output port. Both 

ports are of type realShort.  

Functional design: Firstly, incoming data to the component shall be 

padded up with logic ones at the end of the data block, if it does not fully fit the amount 

of data allocated to form an OFDM symbol subsequently which is fixed with two 

hundred and fifty-six subcarriers. The amount of data allocated depends on the code rate 

and modulation scheme selected for the waveform. This function is embedded in the 

pushpacket function in port_impl.cpp. The data shall then be randomized accordingly as 

described in Chapter II. The described functions are illustrated in Figure 18. 
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Figure 18.   Functional description of component randomizer_802_16. 

 

b. Convolutional Encoder 

Component name: CC_encode_802_16 

Port design: CC_encode_802_16 has one input and one output port. Both 

ports are of type realShort.    

Functional design:  The data block shall be convolutionally coded as 

described in Chapter II, with a rate of 1/2, 2/3, 3/4 or 5/6 corresponding to the selected 

waveform profile. The encoder is designed based on a fundamental 1/2 code rate. Higher 

rates are derived from it by puncturing the encoded data. The described function is 

illustrated in Figure 19. 

34 



Process_data

Generate 
encoding bits

Data input

Data output

Puncture? Rate 2/3,3/4 
or 5/6

Puncture 
encoded data

Y

N

Process_data

Generate 
encoding bits

Data input

Data output

Puncture? Rate 2/3,3/4 
or 5/6

Puncture 
encoded data

Y

N

 
Figure 19.   Functional description of component CC_encoder_802_16. 

 

c. Interleaver 

Component name: interleaver_802_16 

Port design: interleaver_802_16 has one input and one output port. Both 

ports are of type realShort.    

Functional design:  The data block shall be interleaved as described in 

Chapter II. The interleaver re-arranges the order of the incoming data using two 

permutations. The described function is illustrated in Figure 20. 
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Figure 20.   Functional description of component interleaver_802_16. 

 

d. BPSK Symbol Mapper 

Component name: bpsk_mod_802_16 

Port design: bpsk_mod_802_16 has one input port of type realShort and 

one output port of type ComplexFloat.     
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Functional design:  The data block shall be BPSK modulated based on the 

constellation shown in Chapter II. To be consistent with the format of the other mapping 

schemes, two output ports for the In-phase and Quadrature channels are provided for in 

the structure although only the In-phase channel is necessary. For this component, the 

incoming data will always map to zero on the Quadrature channel. The described 

function is illustrated in Figure 21. 
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Figure 21.   Functional description of component bpsk_mod_802_16. 

 

e. QPSK Symbol Mapper 

Component name: qpsk_mod_802_16 

Port design: qpsk_mod_802_16 has one input port of type realShort and 

one output port of type ComplexFloat.     

Functional design:  The data block shall be QPSK modulated based on the 

constellation shown in Chapter II. The described function can be similarly illustrated as 

in Figure 21. 

 

f. 16-QAM Symbol Mapper 
Component name: QAM16_mod_802_16 

Port design: QAM16_mod_802_16 has one input port of type realShort 

and one output port of type ComplexFloat.     
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Functional design:  The data block shall be 16-QAM modulated based on 

the constellation shown in Chapter II. The described function can be similarly illustrated 

as in Figure 21. 

 

g. 64-QAM Symbol Mapper 
Component name: QAM64_mod_802_16 

Port design: QAM64_mod_802_16 has one input port of type realShort 

and one output port of type ComplexFloat.     

Functional design:  The data block shall be 64-QAM modulated based on 

the constellation shown in Chapter II. The described function can be similarly illustrated 

as in Figure 21. 

 

h. Insert Guard Subcarriers 
Component name: guardIns_802_16 

Port design: guardIns_802_16 has one input and one output port. Both are 

of type ComplexFloat.     

Functional design:  The data block shall have null data, equivalently 

subcarriers, appended to its front and end as described in Chapter II. The described 

function is illustrated in Figure 22. 
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Figure 22.   Functional description of component guardIns_802_16. 
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i. Insert Pilot Tone and DC Null Subcarriers 

Component name: ptIns_802_16 

Port design: ptIns_802_16 has one input and one output port. Both are of 

type ComplexFloat.     

Functional design:  The data block shall have pilot tone and DC null data, 

equivalently subcarriers, inserted into prescribed locations of the incoming data block as 

described in Chapter II. The values of the pilot tone data are to be determined through a 

randomizing function which defers between the uplink and downlink transmission and 

has to be pre-selected. The described function is illustrated in Figure 23. 
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Figure 23.   Functional description of component ptIns_802_16. 

 

j. Inverse Fast Fourier Transform (IFFT) 

Component name: Data_IFFT 

Port design: Data_IFFT has one input and one output port. Both are of 

type ComplexFloat.     

Functional design:  It implements the Inverse Fast Fourier Transform for 

OFDM modulation. The input data are taken as frequency samples and converted to time 

samples using the Decimation-In-Time (DIT) Permutated Input - Natural Output (PINO) 
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IFFT algorithm, which is described by Leong in [22]. The described function is 

illustrated in Figure 24 below.  
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Figure 24.   Functional description of component Data_IFFT (After [22]). 

 

k. Insert Cyclic Prefix 

Component name: cpIns_802_16 

Port design: cpIns_802_16 has one input and one output port. Both are of 

type ComplexFloat.     

Functional design:  The data block shall have a cyclic prefix, equivalently 

a block of duplicated subcarriers, appended to its front as described in Chapter II. The 

proportion of the data to duplicate and append is to be pre-set. The described function is 

illustrated in Figure 25. 
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Figure 25.   Functional description of component cpIns_802_16.  

 

2. Receiver 
The fundamental components required in the receiver waveform are illustrated in 

Figure 16. As with the approach of the software development using the Incremental 

Development model, the simplest components were developed first, in step with the 

associated transmitter component, and added as increments to the waveform before 

moving on to develop more complicated components.  

The following sections describe the design of the components within the receiver 

waveform with the exception of the Reed-Solomon Encoder which was not implemented 

within this thesis work. The components to implement the Fast Fourier Transform and 

Convolutional decoding were reused and modified slightly from the ones developed by 

Leong Wai Kiat who was working on the IEEE 802.11a implementation using OSSIE for 

his thesis [22]. 

 

a. De-randomizer 
Component name: derandomizer_802_16 

Port design: derandomizer_802_16 has one input and one output port. 

Both ports are of type realShort.  
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Functional design: The incoming scrambled data shall be de-randomized 

by applying the same randomizing methodology as described in Chapter II. The 

described functions are illustrated in Figure 26. 
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Figure 26.   Functional description of component derandomizer_802_16. 

 

b. Convolutional Decoder 

Component name: DATA_conv_dec 

Port design: DATA_conv_dec has one input and one output port. Both are 

of type realShort.  

Functional design:  Viterbi decoding is chosen to decode the deinterleaved 

bit streams of convolutional codes. The incoming data have been convolutionally 

encoded with a rate of 1/2, 2/3, 3/4 or 5/6. Except in the case of code rate 1/2, dummy 

bits are inserted prior to decoding since the higher code rates are derived from the basic 

1/2 code rate by puncturing the encoded data at the transmitter. The functional flow is 

shown in Figure 27, 28 and 29. [22] 
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Figure 27.   Functional description of component Data_conv_dec (After 

[22]). 
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Figure 28.   Functional description of function initialize_viterbi within 

Component Data_conv_dec (From [22]). 
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Figure 29.   Functional description of function process_viterbi within 

component Data_conv_dec (From [22]). 
 

c. De-interleaver 

Component name: deinterleaver_802_16 

Port design: deinterleaver_802_16 has one input and one output port. Both 

ports are of type realShort.    

Functional design:  The data block shall be de-interleaved as described in 

Chapter II. The de-interleaver re-arranges the order of the incoming data using two 

permutations. The described function is illustrated in Figure 30. 
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Figure 30.   Functional description of component deinterleaver_802_16. 
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d. BPSK Symbol De-mapper 

Component name: bpsk_demod_802_16 

Port design: bpsk_demod_802_16 has one input port of type 

ComplexFloat and one output port of type realShort.     

Functional design:  The data block shall be BPSK demodulated based on 

the constellation shown on Figure 8 in Chapter II. To be consistent with the format of the 

other mapping schemes, two inputs for the In-phase and Quadrature channels are catered 

for in the structure although only the In-phase channel is necessary. For this component, 

the algorithm will only process data from the In-phase channel. The described function is 

illustrated in Figure 31. 
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Figure 31.   Functional description of component bpsk_demod_802_16. 

 

e. QPSK Symbol De-mapper 

Component name: qpsk_demod_802_16 

Port design: qpsk_demod_802_16 has one input port of type 

ComplexFloat and one output port of type realShort.     

Functional design:  The data block shall be QPSK demodulated based on 

the constellation shown on Figure 8 in Chapter II. The described function is illustrated as 

in Figure 32. 
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Figure 32.   Functional description of component qpsk_demod_802_16. 

 

f. 16-QAM Symbol De-mapper 

Component name: QAM16_demod_802_16 

Port design: QAM16_demod_802_16 has one input port of type 

ComplexFloat and one output port of type realShort.     

Functional design:  The data block shall be 16-QAM demodulated based 

on the constellation shown on Figure 8 in Chapter II. The described function can be 

similarly illustrated as in Figure 32. 

 

g. 64-QAM Symbol De-mapper 
Component name: QAM64_demod_802_16 

Port design: QAM64_demod_802_16 has one input port of type 

ComplexFloat and one output port of type realShort.     

Functional design:  The data block shall be 64-QAM demodulated based 

on the constellation shown in Chapter II. The described function can be similarly 

illustrated as in Figure 32. 

 

h. Remove Guard Subcarriers 
Component name: guardRem_802_16 
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Port design: guardRem_802_16 has one input and one output port. Both 

are of type ComplexFloat.     

Functional design:  The data block shall have null data, equivalently 

subcarriers, removed from its front and end as described in Chapter II. The described 

function is illustrated in Figure 33. 
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Figure 33.   Functional description of component guardRem_802_16. 

 

i. Remove Pilot Tone and DC Null Subcarriers 

Component name: ptRem_802_16 

Port design: ptRem_802_16 has one input and one output port. Both are of 

type ComplexFloat.     

Functional design:  The data block shall have pilot tone and DC null data, 

equivalently subcarriers, removed from prescribed locations of the incoming data block 

as described in Chapter II. The described function is illustrated in Figure 34. 
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Process_data

Remove pilot tone
from locationsI-Data input I-Data output

Q-Data outputQ-Data input

Remove DC null

Remove pilot tone
from locations

Remove DC null

Pre-set locations

 
Figure 34.   Functional description of component ptRem_802_16. 

 

j. Fast Fourier Transform (IFFT) 

Component name: Data_IFFT 

Port design: Data_IFFT has one input and one output port. Both are of 

type ComplexFloat.     

Functional design:  It implements the Fast Fourier Transform for the 

OFDM demodulation. The input data are taken as time samples and converted to 

frequency samples using the Decimation-In-Time (DIT) Permutated Input - Natural 

Output (PINO) FFT algorithm as described by Leong in [22]. The described function is 

illustrated in Figure 35. [22] 
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freq samplesI-Data input I-Data output

Q-Data outputQ-Data input
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DIT PINO
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Nsym times

End

Y
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Figure 35.   Functional description of component Data_FFT (After [22]). 

 

k. Remove Cyclic Prefix 
Component name: cpRem_802_16 

Port design: cpRem_802_16 has one input and output port. Both are of 

type ComplexFloat.     

Functional design:  The data block shall have the cyclic prefix, 

equivalently a block of duplicated subcarriers, removed from its front as described in 

Chapter II. The proportion of the data to duplicate and append is to be pre-set. The 

described function is illustrated in Figure 36. 

Process_data

Remove CP
From start of dataI-Data input I-Data output

Q-Data outputQ-Data input Remove CP
From start of data

CP factor

Process_data

Remove CP
From start of dataI-Data input I-Data output

Q-Data outputQ-Data input Remove CP
From start of data

CP factor

 
Figure 36.   Functional description of component cpRem_802_16.  
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E. SUMMARY 
This chapter presented the process of software development. The Incremental 

Development Model was adopted as the approach to develop the software. The 

considerations taken for the software development were discussed. The design of the 

waveform and components were also explained. The next chapter will present the 

software tests and results. For the former, the test methodology will be described. For the 

latter, the results with respect to meeting the objectives of the thesis will be presented. 
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V. SOFTWARE TESTS AND RESULTS 

A. TEST METHODOLOGY 
A convenient way of testing the developed software will be to verify the 

functionality of the waveform by having it receive an actual external transmission of an 

IEEE 802.16-2004 standard signal in the air. However, it was not feasible as there is no 

actual hardware interface implementation carried out in this thesis. The waveform was 

also not complete given that the Reed-Solomon encoder and decoder were not developed. 

In addition, the waveform design for the receiver does not provision for frequency or 

phase synchronization, symbol synchronization, fading mitigation and packet detection, 

which are necessary functions for a working receiver. 

The overall software development approach using the Incremental Development 

Model remains the same where software testing is an integral part of each increment 

cycle. For each increment cycle, software testing was done first on individual 

components before subsequent testing of the incremented waveform. This methodology 

is elaborated in Figure 37. 

A test case is available in the IEEE 802.16-2004 standard document to validate 

the functionality of the individual components. The details of the test case are 

summarized in Table 8. The SDR transmitter components were first tested individually 

through a simple waveform set-up shown in Figure 38. The results were then verified 

against the test case to validate functionality of the component.  

 



Test transmitter 
component

against case study
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Integrate
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against case study
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receiver component
against transmitter

component

Integrate
components into
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waveform

Troubleshoot
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Figure 37.   Software test methodology. 

 

single_ch_data_gen
or

TxComplexFloat
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component

Data Generator
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RxComplexFloat

Data Receiver
single_ch_data_gen

or
TxComplexFloat

Transmitter
component

Data Generator
single_ch_RXDemo

or
RxComplexFloat

Data Receiver

 
Figure 38.   Set-up for testing a transmitter component. 

 

In the simple waveform set-up for component testing, the single_ch_data_gen 

component was created to output a single-channel binary sequence. The TxComplexFloat 

component was created to output dual-channel data in real-numbered format. The 

single_ch_RXDemo component was created to receive a single-channel binary sequence. 

The received data was then written into a text file named single_ch_RXDemo.txt for 

analysis and verification against the test case. The RxComplexFloat component was 

created to receive dual-channel data in real-numbered format. Similarly, the received data 

was written into a text file named RxComplexFloat.txt. Depending on the type of data 

the component under test is required to receive and transmit, the appropriate data 

generator and receiver would be deployed accordingly.  
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Having successfully tested the transmitter component and had its functionality 

validated against the test case, the corresponding receiver component would then be 

tested against this transmitter component. The functionality of the receiver component 

was validated by verifying that the data, ported to a text file, received by the data receiver 

was the same as that sent out by the data generator. An example of this set-up is shown in 

Figure 39. 

 

single_ch_data_gen Interleaver
component

Data Generator

single_ch_RXDemo

Data Receiver

De-interleaver
component

realShort realShort
single_ch_data_gen Interleaver

component

Data Generator

single_ch_RXDemo

Data Receiver

De-interleaver
component

realShort realShort

 
Figure 39.   An example of set-up for testing a receiver component. 

 

Following the successful tests of the transmitter and corresponding receiver 

components, they would then be integrated into the waveform as increments and were 

tested as a waveform. An example of this set-up is shown in Figure 40. 
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component

realShort realShort complexFloat

realShort realShort

 
Figure 40.   An example of set-up for testing an incremented waveform. 
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77 FA 4F 17 4E 3E E6 70 E8 CD 3F 76 90 C4 2C DB F9 B7 FB 43 6C F1 9A BD ED 0A 1C D8 1B
EC 9B 30 15 BA DA 31 F5 50 49 7D 56 ED B4 88 CC 72 FC 5C
-100: 1 -1, -99: -1 -1, -98: 1 -1, -97: -1 -1, -96: -1 -1, -95: -1 -1, -94: -1 1, -93: -1 1, -92: 1 -1, -91: 1
1, -90: -1 -1, -89: -1 -1, -88:pilot= 1 0, -87: 1 1, -86: 1 -1, -85: 1 -1, -84: -1 -1, -83: 1 -1, -82: 1 1, -81:
-1 -1, -80: -1 1, -79: 1 1, -78: -1 -1, -77: -1 -1, -76: -1 1, -75: -1 -1, -74: -1 1, -73: 1 -1, -72: -1 1, -71:
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-41: -1 1, -40: -1 -1, -39: 1 1, -38:pilot= 1 0, -37: -1 -1, -36: 1 -1, -35: -1 1, -34: -1 -1, -33: -1 -1, -32:
-1 -1, -31: -1 1, -30: 1 -1, -29: -1 1, -28: -1 -1, -27: 1 -1, -26: -1 -1, -25: -1 -1, -24: -1 -1, -23: -1 1,
-22: -1 -1, -21: 1 -1, -20: 1 1, -19: 1 1, -18: -1 -1, -17: 1 -1, -16: -1 1, -15: -1 -1, -14: 1 1, -13:pilot= -
1 0, -12: -1 -1, -11: -1 -1, -10: 1 1, -9: 1 -1, -8: -1 1, -7: 1 -1, -6: -1 1, -5: -1 1, -4: -1 1, -3: -1 -1, -2: -
1 -1, -1: 1 -1, 0: 0 0, 1: -1 -1, 2: -1 1, 3: -1 -1, 4: 1 -1, 5: 1 1, 6: 1 1, 7: -1 1, 8: -1 1, 9: 1 1, 10: 1 -1,
11: -1 -1, 12: 1 1, 13:pilot= 1 0, 14: -1 -1, 15: 1 -1, 16: -1 1, 17: 1 1, 18: 1 1, 19: 1 -1, 20: -1 1, 21: -1
-1, 22: -1 -1, 23: -1 1, 24: -1 -1, 25: 1 1, 26: -1 1, 27: 1 -1, 28: -1 1, 29: -1 -1, 30: 1 1, 31: -1 -1, 32: 1
1, 33: 1 1, 34: 1 1, 35: 1 -1, 36: 1 -1, 37: 1 -1, 38:pilot= 1 0, 39: -1 1, 40: -1 -1, 41: -1 1, 42: -1 1, 43:
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-1 -1, 66: -1 -1, 67: 1 -1, 68: 1 -1, 69: 1 -1, 70: 1 -1, 71: -1 1, 72: -1 -1, 73: -1 1, 74: -1 -1, 75: 1 -1,
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1 1, 88:pilot= 1 0, 89: 1 -1, 90: -1 -1, 91: 1 1, 92: -1 1, 93: -1 -1, 94: -1 -1, 95: -1 -1, 96: 1 1, 97: 1 -1,
98: 1 -1, 99: -1 -1, 100: 1 1

* Note that the above QPSK values (all values with exception of the BPSK pilots) are to be normalized with a factor 1/ 2

One burst of OFDM uplink data. Modulation mode: QPSK, rate 3/4

Subcarrier Mapping 
(frequency offset index: 
I value Q value)            

Interleaved Data (Hex)

Interleaved Data (Hex)

Input Data (Hex)

Randomized Data 
(Hex)
Reed-Solomon 
Encoded Data (Hex)
Convolutionally 
Encoded Data (Hex)

 √ 

Table 8.   An example of an IEEE 802.16 test case (From [10]). 

 

B. RESULTS 
This section presents the results of the thesis work with respect to the goals of the 

thesis which can be categorized into two aspects of the developed software functionality 

and reusability. 

  

1. Functionality 
The test methodology described above in Section A serves to validate the 

functionality of the individual components. All transmitter and receiver components 

required to build the waveform compliant to the physical layer of the IEEE 802.16 

WirelessMAN-OFDMTM, except the Reed-Solomon encoder and decoder, were tested 

and had their functionality validated successfully.  
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2. Reusability and Reconfigurability 
Reusability is an important trait of the software since the developed components 

are to be contributed to a shared library for future use. Closely related to reusability of 

components is the trait of reconfigurability of waveforms. These considerations for the 

software design have been elaborated upon in Chapter IV. The SDR components 

developed in this thesis were designed with a strong emphasis on reusability and 

reconfigurability. The following describes the features incorporated into the design of the 

components that strive to achieve these traits.  

 

a. Documentation 
Proper commentary was inserted in all the source code for the software. 

The commentary shall serve to explain in further detail the workings of the software 

algorithm. It also differentiates portions of the code which were manually modified or 

inserted from those that were automatically generated by the OWD. These commentaries 

will be useful as reference for future modifications and adaptations. 

In addition, for every SDR component, a description file was created that 

details the general parameters relevant to understanding the structural design of the 

component. This information will be useful as a help reference to assist in deploying the 

component in the OWD for the building of any waveform. In other words, no 

foreknowledge of the design of the components in the library is necessary to still be able 

to select and deploy appropriately the library components in order to build any waveform 

effectively. The description file is a text file stored in the component folder in the OS file 

system. An example of a description file is shown in Figure 41. 

 



 
Figure 41.   An example of a SDR component description file. 

 

b. Naming Convention 
As much as it is desired for the SDR components to be generic and 

elementary such that they are applicable for building all kinds of waveform profiles, 

fundamental attribute differences between waveform requirements may dictate otherwise. 

For example, the constellation for the IEEE 802.16-2004 standard is different from that 

specified in the IEEE 802.11a standard. This dictates that there cannot be a generic 

symbol mapping component that can satisfy the requirements of both standards without 

having to change some parameters which means having to recompile the component each 
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time it is used differently. This inconvenience of having to recompile the component may 

be circumvented by having a control port interface, in addition to the standard data port 

interface, which detects this parameter change. However, this structural design of the 

component may inadvertently complicate the whole waveform design since it is expected 

that the standard communication signal does not cater for such a parameter change i.e., 

provision for differentiation of the communications standard. The control signal that 

triggers the parameter change within the component will then have to be internally 

generated within the waveform thus complicating the design.  

It would be more feasible to allow in the library, where applicable, 

multiple components of the same function but different attributes. For example, there can 

be a BPSK symbol mapper compliant to the IEEE 802.16-2004 standard and another 

compliant to the IEEE 802.11a. This will alleviate the need to change parameters and 

recompile the component as well as maintain the components in their elementary 

functional structure. Therefore, the naming convention of the components is important to 

differentiate the components accordingly in the library. For example, the BPSK symbol 

mapper compliant to the IEEE 802.16-2004 standard has been named bpsk_mod_802_16 

whereas another compliant to the IEEE 802.11a may be named bpsk_mod_802_11a. 

 

c. Dynamic Data Size 

In OSSIE, the data flow between components is in terms of packets. The 

size of the packet varies according to the waveform signal profile. For example, in the 

IEEE 802.16 WirelessMAN-OFDMTM standard, data flow is in terms of an OFDM 

symbol which comprises of 256 subcarriers. For the IEEE 802.11a standard, an OFDM 

signal comprises only of 64 subcarriers.  

As described above, having to recompile a component due to parameter 

change to suit different waveform profile requirements does not align well with the trait 

of component reusability. Therefore, it is important that the components be designed with 

a dynamic ability to receive and handle different data sizes. 
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bufferI

I

 
Figure 42.   An example of data handling within a component. 

 

Figure 42 above shows how OSSIE sets up the component structural 

design to handle an incoming data packet. The data packet is first received by the 

function pushpacket which accesses the data from a common buffer used for data transfer 

throughout the waveform. Once fully accessed, this data is then copied onto an interim 

buffer for data processing within the component. As such, the size of the data to be 

handled by the component can be ascertained during the operation within pushpacket, 

and initialized for subsequent processing by process_data.  

 

d. Elementary Functional Design 
As described in Chapter IV, the SDR components were designed to have a 

single elementary function. This feature enables the components to serve as basic 

building blocks in building any waveform.  For example, instead of developing a symbol 

mapper component that encompasses functions of BPSK, QPSK, 16-QAM and 64-QAM, 

four separate components were developed that each embodies a single function. In the 

former design, the inconveniences that will be incurred in using the component were 

described above under the section on the importance of the component naming 

convention. The latter design will enhance reusability of the components and 

reconfigurability of the waveform. This design will also be very useful for waveforms 

that support multi-mode operations which will be elaborated in greater detail below in 

Chapter VI. 
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e. Generic Port Interface Structure 
The component design restricted the port interfaces of each component to 

be kept simple and elementary and only data port interfaces were used. Having additional 

control data interfaces will incur complexity in waveform design as described above 

under the section on the importance of the component naming convention. Keeping port 

interfaces simple and generic is important in ensuring reusability of the component and 

reconfigurability of the waveform. This can be illustrated in a waveform set up for multi-

mode operation which is elaborated in greater detail below in Chapter VI.  

 

C. SUMMARY 
This chapter presented the software test methodology and the results with respect 

to meeting the thesis objectives. All the transmitter and receiver components required to 

build the waveform compliant to the physical layer of the IEEE 802.16 WirelessMAN-

OFDMTM, except the Reed-Solomon encoder and decoder, were tested and validated 

successfully. Several features were incorporated into the component design to good 

reusability of the components. These features include having good documentation, a 

useful component naming convention, dynamic data size handling capability, a simple 

functional design and generic port interfaces. The next chapter will present additional 

design work which focuses on a suggested architecture that allows multi-mode operations 

without compromising the reusability of the components. An experiment to design and 

test the architecture will be presented and results explained.    



60 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

VI. ADDITIONAL WORK 

Although developing a fully operational receiver based on the IEEE 802.16-2004 

standard was not attempted in this thesis, the work does include a suggested architecture 

to achieve multi-mode operations. In this chapter, the suggested architecture is described 

on. An experiment to design and test the architecture will be presented and results 

explained.  

In today’s data communication standards, it is common to provision for multi-

mode operations. This is especially so for wireless communication where different modes 

have to be catered for in meeting dynamic channel characteristics. For example, in the 

IEEE 802.16 WirelessMan-OFDMTM standard, twenty different burst profiles are 

provisioned for [10]. These profiles consist of different combinations of modulation type 

and error correction coding scheme and rate. Control information in the header within a 

frame tells the receiver which burst profile to adopt to receive the following data bursts 

within the frame.  

A waveform design that will meet such provision requirements can be 

complicated. A convenient way is to custom-build components that will take on different 

functions given a parameter change. However, components built in such a way will not 

be very reusable since it is customized for a particular type of waveform.  

 

A. MULTI-MODE OPERATIONS WAVEFORM DESIGN 
In this thesis, a waveform design was experimented with to cater to multi-mode 

operations despite using simple and reusable components. This design is shown in Figure 

43. Component 1a, 1b and 1c can be separate components of the same function but of 

different attributes. For example, Component 1a may be a BPSK symbol mapper while 

Component 1b may be a QPSK symbol mapper.  

In OSSIE, a component designated as an Assembly Controller will trigger the 

start of the waveform operations.  The Selector component, designated as the Assembly 

Controller, will first trigger the Data Generator to send the first or the next data packet, 

regardless of size since all the components shall be designed with dynamic data size 



handling ability. Upon receiving the data packet from the Data Generator, the Selector 

shall proceed to check the control information received from the Receiver. In the case the 

data received from the Data Generator is the first, no control information will be 

available from the Receiver. This also indicates that this data packet contains the header 

information required to select which profile to adopt to receive subsequent data packets. 

Meanwhile, the Selector will output the first data packet, containing the header 

information, to a default profile by sending it to the appropriate output interface port. 

This data packet will then be processed accordingly until the relevant header information 

is being extracted by the Receiver and then relayed back to the Selector through the 

control port interface. The whole cycle then repeats until the end of data transmission.  
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Figure 43.   Conceptual waveform design for multi-mode operations. 

 

A working model shown in Figure 44 was constructed and tested. The 

components Profile 1, 2 and 3 were created to represent waveforms of different profiles. 

In real implementation, components Profile 1, 2 and 3 could be a series of simple and 

reusable components.  
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B. MULTI-MODE OPERATIONS COMPONENT DESIGN 
The key components in this waveform set-up for experimentation are the Selector 

and Receiver. The port interface structure of the individual components are illustrated in 

Figure 44. All port interfaces are of type realShort.  

Components Profile 1, 2 and 3 were created as dummies that did no actual 

processing work since it would not have contributed to the goal of the experimentation. 

The only significant role of these components was to flag their respective profile name 

when data was passing through them. This was so the data flow through the waveform 

could be tracked and verified if the correct profile was selected.  

The Data Generator, named single_ch_data_gen_FB, serves to output a packet of 

the binary data stream only upon receiving the control signal from the Selector.  
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Figure 44.   Working model of a multi-mode operations waveform. 

 

The Selector, named SelectorReal_3Out, is designed as an Assembly Controller 

which means it possesses a function to initiate waveform activation. In this case, it does 
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so by sending a control signal to trigger the Data Generator’s function.  The Selector then 

waits for the data input from the Data Generator. Upon receiving the data packet, it then 

checks its input control information received from the Receiver. This information is 

necessary to help the Selector decide to which data port interface to channel the data 

packet. If there is no control signal available yet, the Selector will then proceed to 

channel the data packet to a default output port interface, corresponding to the lowest 

data rate mode, i.e. BPSK modulation with a rate 1/2 convolutional code. The functional 

description of the Selector is illustrated in Figure 45.  

It should be noted that although OSSIE 0.5.0 allows multiple input port interface 

of the same type, they share a common buffer as explained in Chapter IV. In this case, the 

control and data input port interfaces of the Selector are of the same port type realShort. 

It was thus important in the design of the component that data stored in this common 

buffer are read before being overwritten by another.  
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Figure 45.   Functional Description of SelectorReal_3Out. 
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The Receiver’s main function is to receive a data packet and extract the header 

information whose location on the data stream is pre-known. It then feeds this header 

information back to the Selector.   

 

C. TESTS AND RESULTS 
In this experimentation, the main purpose is to test the synchronization of the 

signal flow among the components which is critical to rendering the design feasible for 

multi-mode operations.  

The waveform was constructed in OWD based on the working model shown in 

Figure 44. Data received at each component was displayed for analysis and verification 

that the signal flow was according to intentions. A script of the test results is shown in 

Figure 46. It clearly shows that the waveform was performing as intended. 

This experiment demonstrated that multi-mode operations within a waveform is 

feasible without compromising the reusability of the components. The waveform can be 

reconfigured with different profiles easily.  

 



 
Figure 46.   Script of test results for a multi-mode operations capable 

waveform.  

 

D. SUMMARY 
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This chapter presented the additional thesis design work which focused on a 

suggested architecture that allows multi-mode operations without compromising the 

reusability of the components. An experiment to design and test the architecture was 
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presented and results shown which demonstrated that the suggested architecture was able 

to achieve the intended goal. The next chapter will present the final thesis conclusions 

and recommendations for future works.    
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
The objectives of this thesis were two-fold. The first was to design and 

implement, using OSSIE, software defined radio transmitter and receiver components 

based on the IEEE 802.16 WirelessMAN-OFDMTM standard. The second objective was 

to ensure the developed components, to be contributed to the library, will be flexible and 

useful for building other transceivers .  

In this thesis, all the components specified in the physical layer of the IEEE 

802.16 WirelessMAN-OFDMTM standard were developed successfully except the Reed-

Solomon encoder and decoder. In addition to the validated functionality, the components 

were developed with good reusability that will also serve to enhance reconfigurability of 

waveforms.  

 Additional work in this thesis includes successful experimentation with a 

suggested architectural design that accommodates simple and elementary components in 

a reconfigurable waveform that supports multi-mode operations.  

 

B. RECOMMENDATIONS FOR FUTURE WORK 
The software components developed in this thesis and the successful results of 

experimentation with a multi-mode operations waveform design serve as a baseline to  

implement a fully functional IEEE 802.16 WirelessMAN-OFDMTM transceiver. 

Additional software components to be developed include the Reed-Solomon encoder and 

decoder, the waveform profile selector and the receiver at the end of the waveform as 

well as components to handle frequency and phase synchronization, packet detection, 

ranging, power control, symbol synchronization and mitigation of fading [10]. 

Components are needed also to interface the waveform with the RF front-end 

implemented in hardware.  
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